Intersective polynomials and Diophantine approximation, II

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quantitative Result on Diophantine Approximation for Intersective Polynomials

In this short note, we closely follow the approach of Green and Tao to extend the best known bound for recurrence modulo 1 from squares to the largest possible class of polynomials. The paper concludes with a brief discussion of a consequence of this result for polynomial structures in sumsets and limitations of the method.

متن کامل

Intersective polynomials and the polynomial Szemerédi theorem

Let P = {p1, . . . , pr} ⊂ Q[n1, . . . , nm] be a family of polynomials such that pi(Z) ⊆ Z, i = 1, . . . , r. We say that the family P has the PSZ property if for any set E ⊆ Z with d∗(E) = lim supN−M→∞ |E∩[M,N−1]| N−M > 0 there exist infinitely many n ∈ Zm such that E contains a polynomial progression of the form {a, a + p1(n), . . . , a + pr(n)}. We prove that a polynomial family P = {p1, . ...

متن کامل

Diophantine Approximation of Ternary Linear Forms . II

Let 6 denote the positive root of the equation xs + x2 — 2x — 1 = 0; that is, 8 = 2 cos(27r/7). The main result of the paper is the evaluation of the constant lim supm-co min M2\x + By + 02z|, where the min is taken over all integers x, y, z satisfying 1 g max (\y\, |z|) g M. Its value is (29 + 3),/7 = .78485. The same method can be applied to other constants of the same type.

متن کامل

On transfer inequalities in Diophantine approximation, II

Let Θ be a point in R. We are concerned with the approximation to Θ by rational linear subvarieties of dimension d for 0 ≤ d ≤ n−1. To that purpose, we introduce various convex bodies in the Grassmann algebra Λ(R). It turns out that our convex bodies in degree d are the d-th compound, in the sense of Mahler, of convex bodies in degree one. A dual formulation is also given. This approach enables...

متن کامل

Diophantine approximation and Diophantine equations

The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte für Mathematik

سال: 2014

ISSN: 0026-9255,1436-5081

DOI: 10.1007/s00605-014-0665-8